93 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from flask import Blueprint, jsonify, request, g, current_app
 | 
						||
from werkzeug.exceptions import HTTPException
 | 
						||
import sqlite3
 | 
						||
import datetime
 | 
						||
import logging
 | 
						||
import random
 | 
						||
import numpy as np
 | 
						||
from collections import defaultdict
 | 
						||
 | 
						||
# 创建蓝图
 | 
						||
bp = Blueprint('chou3', __name__, url_prefix='/api')
 | 
						||
 | 
						||
 | 
						||
@bp.route('/ph_data/get_ph_today', methods=['GET'])
 | 
						||
def get_ph_today():
 | 
						||
    """获取今天的pH数据,返回4个实际值和4个预测值"""
 | 
						||
    try:
 | 
						||
        # 获取4个实际pH值(6.1-6.7范围内)
 | 
						||
        db_path = current_app.config.get('DATABASE', 'agriculture.db')
 | 
						||
        conn = sqlite3.connect(db_path)
 | 
						||
        cursor = conn.cursor()
 | 
						||
 | 
						||
        # 从数据库中获取6.1-6.7范围内的pH值
 | 
						||
        cursor.execute("SELECT ph FROM sensor_data WHERE ph BETWEEN 6.1 AND 6.7 ORDER BY RANDOM() LIMIT 4")
 | 
						||
        actual_values = [row[0] for row in cursor.fetchall()]
 | 
						||
 | 
						||
        # 如果不足4个,用6.1-6.7范围内的随机值补全
 | 
						||
        while len(actual_values) < 4:
 | 
						||
            actual_values.append(round(random.uniform(6.1, 6.7), 1))
 | 
						||
 | 
						||
        # 从模型文件中获取4个预测值(6.1-6.7范围内)
 | 
						||
        try:
 | 
						||
            pred_values = np.load("./DIY_gccpu_96_96/real_prediction.npy")
 | 
						||
            # 筛选出6.1-6.7范围内的预测值
 | 
						||
            valid_preds = [x for x in pred_values.flatten() if 6.1 <= float(x) <= 6.7]
 | 
						||
 | 
						||
            if len(valid_preds) >= 4:
 | 
						||
                # 如果足够4个,随机选择4个
 | 
						||
                pred_values = random.sample(valid_preds, 4)
 | 
						||
            else:
 | 
						||
                # 如果不足4个,用6.1-6.7范围内的随机值补全
 | 
						||
                needed = 4 - len(valid_preds)
 | 
						||
                pred_values = valid_preds + [round(random.uniform(6.1, 6.7), 2) for _ in range(needed)]
 | 
						||
 | 
						||
            pred_values = [round(float(x), 2) for x in pred_values]
 | 
						||
        except:
 | 
						||
            # 如果模型文件不存在,生成6.1-6.7范围内的随机预测值
 | 
						||
            pred_values = [round(random.uniform(6.1, 6.7), 2) for _ in range(4)]
 | 
						||
 | 
						||
        # 确保最后一个实际值和第一个预测值不同
 | 
						||
        if actual_values[-1] == pred_values[0]:
 | 
						||
            pred_values[0] = round(random.uniform(6.1, 6.7), 2)
 | 
						||
            while pred_values[0] == actual_values[-1]:
 | 
						||
                pred_values[0] = round(random.uniform(6.1, 6.7), 2)
 | 
						||
 | 
						||
        # 生成时间点 (每20分钟)
 | 
						||
        now = datetime.datetime.now()
 | 
						||
        time_points = []
 | 
						||
        for i in range(8):
 | 
						||
            delta = datetime.timedelta(minutes=20 * i)
 | 
						||
            time_point = (now + delta).strftime("%H:%M")
 | 
						||
            time_points.append(time_point)
 | 
						||
 | 
						||
        # 组合数据
 | 
						||
        data = []
 | 
						||
        for i in range(4):
 | 
						||
            data.append({
 | 
						||
                "timestamp": time_points[i],
 | 
						||
                "ph": actual_values[i],
 | 
						||
                "type": "actual"
 | 
						||
            })
 | 
						||
        for i in range(4):
 | 
						||
            data.append({
 | 
						||
                "timestamp": time_points[i + 4],
 | 
						||
                "ph": pred_values[i],
 | 
						||
                "type": "prediction"
 | 
						||
            })
 | 
						||
 | 
						||
        return jsonify({
 | 
						||
            "code": 200,
 | 
						||
            "message": "success",
 | 
						||
            "data": data
 | 
						||
        })
 | 
						||
 | 
						||
    except Exception as e:
 | 
						||
        logging.error(f"Error getting pH data: {str(e)}")
 | 
						||
        return jsonify({
 | 
						||
            "code": 500,
 | 
						||
            "message": "Internal server error",
 | 
						||
            "data": []
 | 
						||
        })
 | 
						||
    finally:
 | 
						||
        conn.close() |